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Abstract—Identifying biomedical relations is necessary to
advance our understanding of biological processes and is
particularly relevant for applications in precision medicine. This
work describes the participation of the lasigeBioTM team in the
BioCreative VII Track 1, whose primary goal is the extraction
and classification of drug and chemical-protein interactions. Our
team adapted an existing neural networks system, BiOnt, that
incorporates external knowledge from biomedical ontologies. To
perform Track 1, we used the Gene Ontology (GO) and the
Chemical Entities of Biological Interest (ChEBI) ontology. We
submitted different runs taking into account the use of features
such as class weights and post-processing rules. However, due to
time constraints, we could not make all the improvements that we
planned initially, and our results were below the mean
performance of the participating teams. Still, we took the first
steps towards this adaption and we are now able to continue
improving this system to reach state-of-the-art performance.
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I. INTRODUCTION

Identifying relations between biomedical entities is a
fundamental block for advancing a wide range of domains
within science and medicine. However, in the continuous
exploration of different hypotheses, more text is produced that
any researcher or clinician can keep up with. Automatically
unravelling this information from literature through text
mining can guide and focus the research on biomedical
relations that are genuinely relevant while minimising time
and resources spent on the task.

Several systems target relations between biomedical
entities in different degrees of complexity. Most systems are
specific to a type of relation, such as protein-protein and
chemical-protein interactions or gene-phenotype relations.
However, others are suited to multiple types of relations, such
as BiOnt (1), BERT (2), and BERT-derivatives (3,4). Nearly
all systems also only use the information provided on the
training data, overlooking openly available knowledge about
the entities themselves, such as domain-specific ontologies.
Ontologies such as the Gene Ontology (GO) (5), the Chemical
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Entities of Biological Interest (ChEBI) (6), and the Disease
Ontology (DO) (7), to name a few, are important sources of
biomedical information. These resources not only attribute
unique identifiers to each domain entity but also define the
relationships that the entities hierarchically have among
themselves, among other relevant entity information.

This article describes our team’s attempt at the prediction
of drug and chemical-protein interactions regarding
BioCreative VII Track 1 (8), through the adaptation of the
BiOnt system, using the GO and ChEBI ontologies. BiOnt is a
system built using bidirectional Long Short-Term Memory
(LSTM) networks, that incorporates Word2Vec word
embeddings (9) and makes use of different combinations of
input channels to maximize performance, including external
knowledge in the form of biomedical ontologies.

We submitted five runs regarding different system
parameter adjustments, including adding class weights and the
use of post-processing rules. Our performance regarding the
mean performance of the teams participating in Track 1 was
below average, with around 0.38 difference in micro-average
F1 respecting our best run. Nevertheless, we consider our
approach relevant since our challenges, which we will
describe in detail, were mainly regarding the preprocessing
stage. BiOnt was made for a lower volume of data. Therefore,
we had to optimize the preprocessing pipeline, but we did not
finish all of the improvements we intended to do, mainly due
to time constraints, which led to the loss of relevant
information and performance.

Our main contribution is the adaption of the BiOnt system
to the extraction of interactions between drugs and
chemicals-proteins using the GO and ChEBI ontologies.
Although our contribution to Track 1 did not yield good
results, it was a starting point to adapt the state-of-the-art
system BiOnt and expand it to deal with different types of
entities while optimizing some of the pipeline processes. The
code supporting our work and trained submitted models are
available at https://github.com/lasigeBioTM/biocreativeVII.

II. METHODOLOGY

This section describes the different stages of our BiOnt
adaptation to predict drug and chemical-protein interactions,
including: (A) preprocessing, (B) training, and (C)
post-processing.

https://github.com/lasigeBioTM/biocreativeVII


A. Preprocessing
The track organizers provided both a training and a

development dataset with 17288 and 3765 relations,
respectively. These relations were classified as one of 14
possible positive labels, which are enumerated in Table II. For
the test set, the teams were only provided with entity
annotations and were asked to predict positive labelled
relations between them. Since we had to distinguish between
positive and non-relations, we added a NO_RELATION label
to all possible pairings mentioned in the same sentence but not
labelled as positive in the training set. Therefore, when
feeding the system with our data, the system could learn what
constitutes a positive relation versus a non-relation and
classify the test set accordingly. The distribution of both labels
was balanced, i.e., the sum of positive labels versus the
number of non-relation labels.

The first preprocessing step was tokenization followed by
dependency parsing, using the SpaCy library, to obtain the
Shortest Dependacy Path (SDP). Then, each element of the
SDP was replaced by a generic string to reduce the effect of
specific entity names on the model, and for each element, we
also obtained the WordNet hypernym class (10). To finalize
our baseline without the use of ontologies, we also used
word2vec word embeddings (11).

Our ontological layer starts by matching each dataset entity
to an ontology concept and obtaining its ancestors. While for
drug/chemical entities this is straightforward using the ChEBI
ontology, for gene/proteins entities is more complicated since
there is not a direct match between these entities and an
existing ontology. To workaround, we used GO and instead of
doing a direct match between the dataset entities and the
entities within the ontology we used the most representative
GO term for each gene/protein entity using the protocol
described in (1).

B. Training
The BiOnt system produces a neural network model with

integrated ontological information. Thus, our preprocessing
pipeline for the DrugProt corpus culminated in three different
information channels fed to the training system: (1) Word
Embeddings, (2) WordNet Classes, and (3) Concatenation of
Ontology Ancestors.

For word embeddings, we used word2vec pre-trained on
the English Wikipedia, which represents each specific word as
a vector that expresses the semantic similarity between
different words. The data is inputted as in the following
example, taking into account the SDP:

druge1 > decreased > expression > of > prote2

The WordNet channel consisted of the hypernyms of each
word and the data was inputted taking into account the
part-of-speech tags of each word and the grammatical
relations between the words of the SDP:

noun.persone1 > verb.change > noun.attribute >

0 > noun.acte2

Finally, in the third and last channel, concatenation of
ontology ancestors, we define the chain of ancestors within
each respective ontology to each entity as represented in Fig.
1. Each sequence of ancestors is represented as a one-hot
vector and then transformed into a dense vector in the
embedding layer.

Fig. 1. Example of a possible relation between two entities reinforced by a
relation between their ontology ancestors.

All models were trained using Adam as the mini-batch
gradient descent optimization algorithm, a learning rate of
1e-4, categorical cross-entropy as loss function, and a dropout
rate of 0.5 for every layer except the penultimate and output
layers.

On some models, we applied class weights due to the
significant imbalance in the number of instances for each
label. To keep the dataset representative of itself and for
application on real-world data, instead of normalizing the
number of classes for each label, we measure the class weight
logarithmic by order of magnitude to avoid damaging bigger
classes.

C. Post-processing
In post-processing, we focused our efforts on defining

rules which could catch more positive pairs. Since, from early
experiences using the development dataset as a test set, we
realized we had missed multiple positive pairs, primarily due
to the preprocessing step.

The nature of the BiOnt system would not allow for
vectorization of a sentence where the entities considered
overlapped. Thus, when entities, such as “Glutathione
peroxidasee1” (GENE-N) and “Glutathionee2” (CHEMICAL),
were considered for a relation, the system decided to discard
the sentence due to overlapping entities. One possibility that
we thought was adding a repeating sentence with different
entities tagged in the training set. For instance, one sentence
would have e1 and the other e2, which we did not test due to
time constraints. This issue brought us to another fault of the
BiOnt system: the lack of optimization of the preprocessing
step, which became widely apparent when using larger



datasets than the ones previously explored, as the one
provided for the BioCreative task at hand.

Coming back to our post-processing stage, having the last
faults in mind, we decided to implement rules that captured
more positive relations. These relations could be of two types:
(1) positive relations tagged with NO_RELATION and (2)
candidate positive relations, which were discarded by BiOnt’s
vectorization issue in the preprocessing phase. For (1), our
system assigned a positive label if the pair considered was
already tagged with a positive label within the same article.
While for (2), we first recovered annotations discarded in the
preprocessing stage and then performed (1). The last step was
discarding all NO_RELATION pairs, keeping only the
positive labels for evaluation.

III. EXPERIMENTS

We performed several experiences using different features,
including the addition of ontolgy ancestors, class weights, and
post-processing rules. Table I presents the performance
metrics for the five best runs considering the usage of the
different features: ancestors (A), class weights (CW), and
post-processing rules (PR). The overall teams’ micro-averaged
metrics obtained for the task were 0.6430 for precision, 0.6291
for recall, and 0.6196 for F1. Thus, our results are quite low in
comparison, which we considered being due to the issues
raised in the previous section. Nevertheless, our best run (run
1) shows that using the three features simultaneously yields
the best results, with each individual feature having a positive
effect on recall.

TABLE I. SYSTEM BEST RUNS (A STANDS FOR ANCESTORS, CW FOR CLASS
WEIGHTS, AND PR FOR POST-PROCESSING RULES)

Run
Features Metrics

A CW PR Precision Recall F1

1 x x x 0.3690 0.1865 0.2478

2 - - - 0.4818 0.1255 0.1991

3 - x - 0.3266 0.1630 0.2175

4 - - x 0.3427 0.1849 0.2394

5 - x x 0.4025 0.1650 0.2340

Even though adding post-processing rules improved the
results, particularly on recall, it was not the difference we
expected. The rule where we assigned positive labels to
entities that we were already labelled as positive within the
same document added some false positives to the results. We
were expecting this because not all entities mentioned in the
same sentence are implicitly related, which is predominant in
article titles, for instance. One example where this happens is
the article 23123662. This article states in several sentences
that chemical entities copper, platinum, and silver have a
positive relation of type SUBSTRACT with the gene rCtr1.
However, these relations hold for some sentences of the article

but not for others or even within the same sentence, leading
our generalization to fail:

The uptake of copperT26 by both cultured rat DRG neurons and
HEK/rCtr1T42 cells was saturable and inhibited by cold
temperature, silver and zinc, consistent with it being mediated
by rCtr1T30.

<T26, T42, SUBSTRACT>
<T26, T30, NO_RELATION>

This discrepancy points to our naive approach to the
dataset, which had complex annotation rules and guidelines
that we should have considered in the system planning.

Table II presents the metrics for the different positive
relation types considered for our best run (run 1). Our system
did not label any candidate relation with the labels (1)
AGONIST-INHIBITOR, (2) PRODUCT-OF, (3)
SUBSTRACT_PRODUCT-OF, and (4)
AGONIST-ACTIVATOR. These labels correspond to three of
the types of relation with fewer training examples: 13 (1), 25
(3), and 29 (4). However, label (2) had 921 training examples,
and therefore, it was surprising that our system could not label
this type of relation. Upon inspecting the results of our
experiments, we realized that this was probably due to the
complexity and variety of the entities. Most of those entities
were composed of multiple words (three or more) divided by
apostrophes with mid entity capitalization, which our system
was not sensitive to maintain in the preprocessing stage. The
system performed best on the labels (1) ACTIVATOR, (2)
ANTAGONIST, (3) INHIBITOR, and (4) PART-OF. These
labels correspond to some of the ones who had more training
examples: 1429 (1), 972 (2), 5392 (3), and 886 (4). However,
the best-performing labels also correspond to relations that are
between repeating and non complex entities.

 TABLE II. METRICS BY RELATION TYPE FOR RUN 1

Relation-Type Precision Recall F1

ACTIVATOR 0.5033 0.2305 0.3162

AGONIST 0.2895 0.1089 0.1583

AGONIST-INHIBITOR 0.0 0.0 0.0

ANTAGONIST 0.5610 0.3007 0.3915

DIRECT-REGULATOR 0.2734 0.2657 0.2695

INDIRECT-DOWNREGULATOR 0.2561 0.1382 0.1795

INDIRECT-UPREGULATOR 0.3411 0.1588 0.2167

INHIBITOR 0.5108 0.2474 0.3333

PART-OF 0.5556 0.1096 0.1832

PRODUCT-OF 0.0 0.0 0.0

SUBSTRACT 0.1410 0.076 0.099

SUBSTRACT_PRODUCT-OF 0.0 0.0 0.0

AGONIST-ACTIVATOR 0.0 0.0 0.0



The differences between best and worst-performing labels
reinforce the need to optimize the preprocessing step to handle
a more diverse group of entities (e.g., with different string and
length variations).

IV. CONCLUSIONS AND FUTURE WORK

This work presented the lasigeBioTM team's approach to
BioCreative VII Task 1 to extract and classify interactions
between drug and chemical-protein entities. Our team took the
preceding steps of adaptation of the deep learning system
BiOnt to deal with larger data volumes and overlapping
entities participating in different relations. Our results were
below the mean performance of the participating teams due to
issues relating to the preprocessing stage. However, we
demonstrated the positive impact of using external information
in the form of the biomedical ontologies GO and ChEBI, class
weights, and post-processing rules.

There is work to be done for our results to be up to par with
the top-performing systems. However, we plan to substantially
improve our approach by resolving the issues stated and
applying rules to capture difficult-to-label relations.
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